UVa Course Catalog (Unofficial, Lou's List)
Complete Catalog for the Applied Mathematics Department    
Class Schedules Index Course Catalogs Index Class Search Page
These pages present data mined from the University of Virginia's student information system (SIS). I hope that you will find them useful. — Lou Bloomfield, Department of Physics
Applied Mathematics
APMA 1000Preparation for Engineering Mathematics (1 - 3)
Covers the fundamental concepts necessary for success in engineering courses and Applied Mathemtics courses.
Course was offered Summer 2022, Spring 2022, Fall 2009
APMA 1001Calculus Placeholder (4)
This course will be used as an enrollment placeholder during summer orientation for incoming 1st year engineering students prior to receiving calculus placement results, AP scores, dual enrollment credit, etc. This course will be replaced with APMA 1090, APMA 1110, or APMA 2120 prior to the fall term based on the student's final calculus placement result.
APMA 1090Single Variable Calculus I (4)
Offered
Fall 2025
The concepts of differential and integral calculus are developed and applied to the elementary functions of a single variable. Limits, rates of change, derivatives, and integrals. Applications are made to problems in analytic geometry and elementary physics. For students with no exposure to high school calculus.
APMA 1110Single Variable Calculus II (4)
Offered
Fall 2025
Advanced techniques of integration are introduced, and integration is used in physics applications like fluid force, work, and center of mass. Improper integrals and approximate integration using Simpson's Rule are also studied. Infinite series including Taylor series are studied and numerical methods involving Taylor polynomials are studied. Parametric equations and polar coordinates are introduced and applied. Complex numbers are introduced.
APMA 1501Special Topics in Applied Mathematics (1)
Student-led special topic courses which vary by semester.
Course was offered Spring 2016, Spring 2014
APMA 2120Multivariable Calculus (4)
Offered
Fall 2025
Topics include vectors in three-space and vector valued functions. The multivariate calculus, including partial differentiation, multiple integrals, line and surface integrals, and the vector calculus, including Green's theorem, the divergence theorem, and Stokes's theorem. Applications. Prerequisite: APMA 1110 or MATH 1320.
APMA 2130Ordinary Differential Equations (4)
Offered
Fall 2025
First order differential equations, second order and higher order linear differential equations, undetermined coefficients, variation of parameters, Laplace transforms, linear systems of first order differential equations and the associated matrix theory, numerical methods. Applications. Prerequisite: APMA 2120 or equivalent.
APMA 2501Special Topics in Applied Mathematics (1 - 4)
Offered
Fall 2025
Special topics in applied mathematics
APMA 3080Linear Algebra (3)
Offered
Fall 2025
Analyze and apply systems of linear equations; vector spaces; linear transformations; matrices; determinants; eigenvalues; eigenvectors; coordinates; diagonalization; orthogonality; projections; inner product spaces; quadratic forms; The course is both computational and applicable. MATLAB is frequently used and prior experience in MATLAB (loops, functions, arrays, conditional statements) is helpful. Prerequisite: APMA 2120 or equivalent.
APMA 3100Probability (3)
Offered
Fall 2025
A calculus-based introduction to probability theory and its applications in engineering and applied science. Includes counting techniques, conditional probability, independence, discrete and continuous random variables, probability distribution functions, expected value and variance, joint distributions, covariance, correlation, the Central Limit theorem, the Poisson process, an introduction to statistical inference. Students must have completed (APMA 2120 or MATH 2310 or MATH 2315) AND (CS 1110 or CS 1111 or CS 1112 or CS 1113 or successfully completed the CS 1110 place out test).
APMA 3110Applied Statistics and Probability (3)
Offered
Fall 2025
Introduces basic concepts of probability such as random variables, single and joint probability distributions, and the central limit theorem. The course then emphasizes applied statistics, including descriptive statistics, statistical inference, confidence intervals, hypothesis testing, correlation, linear regression, and ANOVA. Students cannot receive credit for both this course and APMA 3120. Prerequisite: APMA 2120 or equivalent.
APMA 3120Statistics (3)
Offered
Fall 2025
Includes point estimation methods, confidence intervals, hypothesis testing for one population and two populations, categorical data tests, single and multi-factor analysis of variance (ANOVA) techniques, linear and non-linear regression and correlation analysis, and non-parametric tests. Students cannot receive credit for both this course and APMA 3110. Prerequisite: APMA 3100 or MATH 3100.
APMA 3140Applied Partial Differential Equations (3)
Offered
Fall 2025
Partial differential equations that govern physical phenomena in science and engineering. Separation of variables, superposition, Fourier series, Sturm-Liouville eigenvalue problems, eigenfunction expansion techniques. Particular focus on the heat, wave, and Laplace partial differential equations in rectangular, cylindrical, and spherical coordinates. Prerequisites: (APMA 2120 or MATH 2310 or MATH 2315) AND (APMA 2130 or MATH 3250 or APMA 2501 topic Diff Equations & Linear Algebra)
APMA 3150From Data to Knowledge (3)
Offered
Fall 2025
This course uses a Case-Study approach to teach statistical techniques with R: confidence intervals, hypotheses tests, regression, and anova. Also, it covers major statistical learning techniques for both supervised and unsupervised learning. Supervised learning topics cover regression and classification, and unsupervised learning topics cover clustering & principal component analysis. Prior basic statistic skills are needed.
APMA 3340Complex Variables with Applications (3)
Topics include analytic functions, Cauchy Theorems and formulas, power series, Taylor and Laurent series, complex integration, residue theorem, conformal mapping, and Laplace transforms. Prerequisite: APMA 2120 or MATH 2310 or APMA 2512 - Honors Engineering Mathematics II.
APMA 3501Special Topics in Applied Mathematics (1 - 4)
Offered
Fall 2025
Applies mathematical techniques to special problems of current interest. Topic for each semester are announced at the time of course enrollment.
APMA 4501Special Topics in Applied Mathematics (3)
Applies mathematical techniques to special problems of current interest. Topic for each semester are announced at the time of course enrollment.
Course was offered Spring 2019, Spring 2018, Spring 2017
APMA 4993Independent Reading and Research (1 - 3)
Reading and research under the direction of a faculty member. Prerequisite: Fourth-year standing.
APMA 4995Independent Reading and Research (3)
Reading and research under the direction of a faculty member. Prerequisite: Fourth-year standing.
Course was offered Spring 2010
APMA 5070Numerical Methods (3)
Introduces techniques used in obtaining numerical solutions, emphasizing error estimation. Includes approximation and integration of functions, and solution of algebraic and differential equations. Prerequisite: Two years of college mathematics, including some linear algebra and differential equations, and the ability to write computer programs in any language.
APMA 6000TNon-UVa Transfer/Test Credit (3)
APMA 6020Continuum Mechanics with Applications (3)
Introduces continuum mechanics and mechanics of deformable solids. Vectors and cartesian tensors, stress, strain, deformation, equations of motion, constitutive laws, introduction to elasticity, thermal elasticity, viscoelasticity, plasticity, and fluids. Cross-listed as AM 6020, MAE 6020, CE 6720 Prerequisite: Instructor Permission
APMA 6410Engineering Mathematics I (3)
Offered
Fall 2025
Review of ordinary differential equations. Initial value problems, boundary value problems, and various physical applications. Linear algebra, including systems of linear equations, matrices, eigenvalues, eigenvectors, diagonalization, and various applications. Scalar and vector field theory, including the divergence theorem, Green's theorem, Stokes theorem, and various applications. Partial differential equations that govern physical phenomena in science and engineering. Solution of partial differential equations by separation of variables, superposition, Fourier series, variation of parameters, d' Alembert's solution. Eigenfunction expansion techniques for nonhomogeneous initial-value, boundary-value problems. Particular focus on various physical applications of the heat equation, the potential (Laplace) equation, and the wave equation in rectangular, cylindrical, and spherical coordinates. Cross-listed as MAE 6410. Prerequisite: Graduate standing.
APMA 6430Statistics for Engineers and Scientists (3)
Analyzes the role of statistics in science; hypothesis tests of significance; confidence intervals; design of experiments; regression; correlation analysis; analysis of variance; and introduction to statistical computing with statistical software libraries. Prerequisite: Admission to graduate studies.
APMA 6548Special Topics in Applied Mathematics (1 - 3)
Offered
Fall 2025
Topics vary from year to year and are selected to fill special needs of graduate students.
APMA 7548Selected Topics in Applied Mathematics (3)
Content varies annually; topics may include wave propagation theory, shell theory, control theory, or advanced numerical analysis. Prerequisite: Instructor permission.
APMA 8548Advanced Topics in Applied Mathematics (3)
Course content varies from year to year and depends on students' interests and needs. See APMA 7548 for possible topics. Prerequisite: Instructor permission.
APMA 8897Graduate Teaching Instruction (1 - 6)
For master's students.
APMA 9897Graduate Teaching Instruction (1 - 6)
For doctoral students.